DNS of buoyancy-dominated turbulent flows on a bluff body using the immersed boundary method
نویسندگان
چکیده
A novel immersed boundary (IB) method has been developed for simulating multi-material heat transfer problem – a cylinder in a channel heated from below with mixed convection. The method is based on a second-order velocity/scalar reconstruction near the IB. A novel algorithm has been developed for the IB method to handle conjugate heat transfer. The fluid–solid interface is constructed as a collection of disjoint faces of control volumes associated to different material zones. Coupling conditions for the material zones have been developed such that continuity and conservation of the scalar flux are satisfied by a second-order interpolation. Predictions of the local Nusselt number on the cylinder surface show good agreement with the experimental data. The effect of the Boussinesq approximation on this problem was also investigated. Comparison with the variable density formulation suggests that, in spite of a small thermal expansion coefficient of water, the variable density formulation in a transitional flow with mixed convection is preferable. 2008 Elsevier Inc. All rights reserved.
منابع مشابه
Buoyancy Term Evolution in the Multi Relaxation Time Model of Lattice Boltzmann Method with Variable Thermal Conductivity Using a Modified Set of Boundary Conditions
During the last few years, a number of numerical boundary condition schemes have been used to study various aspects of the no-slip wall condition using the lattice Boltzmann method. In this paper, a modified boundary condition method is employed to simulate the no-slip wall condition in the presence of the body force term near the wall. These conditions are based on the idea of the bounce-back ...
متن کاملNumerical Simulation of Two- Dimensional Complex Flows around Bluff Bodies Using the Immersed Boundary Method
This paper presents a two-dimensional numerical simulation of flows around different bluff bodies, at Re = 100 and 200, using the Immersed Boundary (IB) method, as a sequence of a previous work. The force density term required by the IB method is obtained with the Virtual Physical Model (VPM). Simulations were carried out for two circular cylinders of different diameter in tandem, two cylinders...
متن کاملEffects of coupling on turbulent gas-particle boundary layer flows at borderline volume fractions using kinetic theory
This study is concerned with the prediction of particles’ velocity in a dilute turbulent gas-solidboundary layer flow using a fully Eulerian two-fluid model. The closures required for equationsdescribing the particulate phase are derived from the kinetic theory of granular flows. Gas phaseturbulence is modeled by one-equation model and solid phase turbulence by MLH theory. Resultsof one-way and...
متن کاملA second-order accurate Immersed Boundary Method combined with a soft-sphere collision model for fully-resolved simulations of particle-laden flows
1. Introduction. Flows laden with solid particles are abundant in nature and industry. Examples are the transport of dense sand-water mixtures through pipes for land reclamation purposes, natural erosion and sediment transport in rivers, fluidized bed reactors for the gasification of biomass or coal and the flocculation/sedimentation process in the treatment of drinking water. In all these exam...
متن کاملLarge eddy simulation of compressible turbulent pipe flow with heat transfer
A compressible finite volume formulation for large eddy simulation (LES) of turbulent channel flows was extended to solve the turbulent flows in pipes and annular passages. A general finite volume scheme was developed based on conservation equations in Cartesian coordinates with non-Cartesian control volumes. A dual-time stepping approach with time derivative preconditioning was employed and ti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comput. Physics
دوره 228 شماره
صفحات -
تاریخ انتشار 2009